Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME
CENTER NUMBER \square CANDIDATE NUMBER

MATHEMATICS (US)

Paper 2 (Extended)

You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, center number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary work clearly.
- All answers should be given in their simplest form.

INFORMATION

- The total mark for this paper is 70 .
- The number of marks for each question or part question is shown in parentheses [].

Formula List

For the equation

$$
a x^{2}+b x+c=0
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Lateral surface area, A, of cylinder of radius r, height h.
$A=2 \pi r h$

Lateral surface area, A, of cone of radius r, sloping edge l.
$A=\pi r l$

Surface area, A, of sphere of radius r.

Volume, V, of pyramid, base area A, height h.

Volume, V, of cone of radius r, height h.

Volume, V, of sphere of radius r.

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area }=\frac{1}{2} b c \sin A
\end{aligned}
$$

(a) Write down the order of rotational symmetry of this diagram.
\qquad
(b) On the diagram, draw all the lines of symmetry.

2 The probability that a train is late is 0.15 .
Write down the probability that the train is not late.

3 The box plot shows the number of hours that some students studied last week.

Find
(a) the range,
(b) the median,
\qquad
(c) the interquartile range.
\qquad

The diagram shows two parallel lines intersected by two straight lines.
Find the values of a, b, and c.

$$
\begin{align*}
& a=\text {.. } \\
& b=\ldots . ~
\end{align*}
$$

5 Work out.
(a) $\binom{6}{-5}+\binom{8}{-1}$
(b) $3\binom{-4}{7}$

6 The distance between two towns is 300 km .
(a) Calculate the average speed of a car that takes 4 hours to travel this distance.
\qquad
(b) Calculate the time taken by another car that travels at an average speed of $90 \mathrm{~km} / \mathrm{h}$. Give your answer in hours and minutes.
\qquad
\qquad

7 (a) The nth term of a sequence is $n^{2}+3 n$.
Find the first three terms of this sequence.
(b) These are the first five terms of a different sequence.

$$
\begin{array}{lllll}
25 & 18 & 11 & 4 & -3
\end{array}
$$

Find the nth term of this sequence.

8 Solve the system of linear equations. You must show all your working.

$$
\begin{aligned}
& 2 x+y=3 \\
& x-5 y=40
\end{aligned}
$$

$$
x=
$$

$$
y=.
$$

9 Work out $1 \frac{3}{8}-\frac{5}{6}$.
Give your answer as a fraction in its simplest form.
$10 A$ is the point $(3,-5)$ and B is the point $(9,3)$.
(a) Find the coordinates of the midpoint of $A B$.
\qquad
(b) Find the length of $A B$.

(a) Describe fully the single transformation that maps
(i) triangle A onto triangle B,
\qquad
\qquad
(ii) triangle A onto triangle C.
\qquad
\qquad
(b) Draw the image of triangle A after a translation by the vector $\binom{2}{10}$.

12 (a) Simplify fully.
$\left(4 a b^{5}\right)^{4}$
(b) $\quad 2 p^{\frac{1}{3}}=6$

Find the value of p.

$$
\begin{equation*}
p= \tag{1}
\end{equation*}
$$

(c) $\quad 81^{2} \div 3^{t}=9$

Find the value of t.

$$
t=
$$

13 Annie invests $\$ 8000$ at a rate of 1% per year compound interest.
Work out the value of her investment at the end of 2 years.

14 On a map, a lake has an area of $32 \mathrm{~cm}^{2}$. The scale of the map is 1 cm represents 0.2 km .

Calculate the actual area of the lake.
Give your answer in km^{2}.
km^{2}
$15 y$ varies directly as the square root of $(x-3)$.
When $x=28, y=20$.
Find y when $x=39$.

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

16 Solve for h.

$$
2 m h=g(1-h)
$$

$$
h=
$$

17

(a) Find the slope of line l.
(b) Find the equation of line l in the form $y=m x+b$.

$$
y=
$$

(c) Find the equation of the line that is perpendicular to line l and passes through the point $(12,-7)$. Give your answer in the form $y=m x+b$.

$$
y=
$$

18 A bag contains 3 blue buttons, 8 white buttons, and 5 red buttons.
Two buttons are picked at random from the bag, without replacement.
Work out the probability that the two buttons are either both red or both white.

19

S is a point on $P Q$ such that $P S: S Q=4: 5$.
Find $\overrightarrow{O S}$, in terms of \mathbf{a} and \mathbf{b}, in its simplest form.

$$
\begin{equation*}
\overrightarrow{O S}= \tag{2}
\end{equation*}
$$

Question 20 is printed on the next page.

20 (a) Sketch the graph of $y=\sin x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(b) Solve the equation $2 \sin x=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
\qquad

$$
x=.
$$

$$
\text { or } x=
$$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

